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Abstract—Physiological automatic personality recognition has been largely developed to model an individual’s personality trait from a
variety of signals. However, few studies have tackled the problems of integration methodology from multiple observations into a single
personality prediction. In this study, we focus on finding a novel learning architecture to model the personality trait under a
Many-to-One scenario. We propose to integrate not only the information on the user but also consider the effect of the affective
multimedia stimulus. Specifically, we present a novel Acoustic-Visual Guided Attentive Graph Convolutional Network for enhanced
personality recognition. The emotional multimedia content guides the formation of the physiological responses into a graph-like
structure to integrate latent inter-correlation among all responses toward affective multimedia. Then these graphs would be further
processed by the Graph Convolutional Network (GCN) to jointly model instances and inter-correlation levels of the subject’s responses.
We show that our model outperforms the current state of the art on two large public corpora for personality recognition. Further
analysis reveals that there indeed exists a multimedia preference for inferring personality from physiology, and several
frequency-domain descriptors in ECG and the tonic component in EDA are shown to be robust for automatic personality recognition.

F

1 INTRODUCTION

P ERSONALITY is an important psychological construct
that can be characterized by a few stable and measur-

able attributes. It has long been regarded as a key internal
construct due to its role in influencing an individual’s emo-
tion, modulating behaviors, and triggering decisions, i.e.,
knowing one’s personality would effectively provide us a
sneak peek of an individual’s behavioral patterns. Develop-
ing computational methods that enable automatic person-
ality recognition (APR) [1] has drawn tremendous interest
because of its wide application across different domains. For
example, in Human-Computer Interaction, (HCI), researches
have shown that personalized adaptation based on individ-
ual personality traits can improve user experiences [2], [3],
[4]; personality-driven recommendation systems have also
enabled precision marketing for different media/product
consumption, such as music [5], [6], [7], movie [8], [9],
and e-commerce [10], [11], [12]. Lastly, personality traits
have also been shown to be correlated to lifespan health.
Higher levels of Neuroticism and Conscientiousness will lead
to higher phishing (fraud) vulnerability [13], [14], while
people scoring higher in honesty and humility are more
likely to become fraud victims. All of these demonstrate that
an APR-integrated system would benefit the delivering of
personalized media content with impact [15], and continu-
ously advancing a robust APR system is a critical technical
endeavor.

Most of the prior research on APR has focused on
modeling different signal modalities as measured by users.
For example, a major effort of APR development has used
lexical information [16] that enables personalized profiling
on social media platform [17]. Recently, the proliferation
of miniaturized sensors has enabled low-cost and precise
monitoring of different human internal physiological sig-
nals. This property of continuous sensing and seamless
sensor deployment possess a great advantage to ubiquitous

computing by harnessing these properties that traditional
modalities do not afford [18]. In contrast to expressive cues
(such as written language), these bio-signals provide a sci-
entifically grounded indicator to model personality traits di-
rectly from neurophysiological evidence. These physiologi-
cal signals, such as electroencephalogram (EEG) and Electroder-
mal activity (EDA), represent the reaction of the central and
peripheral nervous systems (CNS and ANS) that is defer-
entially activated when an individual encounters emotional
stimulation [19]. Most if not all of these physiological-based
recognition works share a common experimental setting,
that is, by using emotion-rich audio-visual data as stimuli to
elicit the subject’s internal physiological responses, one can
then build models on these physiological measurements for
automatic recognition of personality [20], [21], [22].

Affective multimedia stimuli play an important role in
all of these studies. The intriguing connection between per-
sonality and media stimulation has been well documented
in various studies. For example, there is a significant prefer-
ence bias for Extroverts on the choice of TV programs and
music genre [23]; individuals with higher Openness often
favor reflective/complex music (such as jazz), while people
with higher Neuroticism prefer more emotional music [24].
Cristani et al. ’s study [25] also demonstrates that visual
patterns extracted from “favorite” Flickr images can be
used to predict user traits. In Colombo et al. ’s study [26],
Creativity, i.e., one of the personality dimensions indexing
one’s curiosity and tolerance for ambiguity, could be distin-
guished from pre-selected commercials; their psychophys-
iological test reveals that less creative individuals would
consistently be activated by all stimuli videos, while highly
creative individuals would get less activated during plain
stimuli. Hence, a key presumption is that one’s traits are
considered as a stable state over time; when an emotional-
rich media content is exposed to users to trigger the latent
arousal, this physiological changes as conditioned on the
media content would differ between people with different
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personalities. Developing a computational framework in
modeling physiology under affective media stimulation has
been at the core of realizing an APR system.

However, most of the current physiological APR systems
neglect the information about these multimedia cues in
their modeling frameworks. That is, no computational work
has yet addressed the issue of personality recognition from
physiology with joint consideration of the exposed acoustic-
visual stimuli. They ignore that an individual’s bodily sig-
nals are triggered through these multimedia stimuli, which
serve as a latent conditional control toward physiological
responses. We argue that to develop a robust and enhanced
APR recognition model from physiology, these media con-
tent signals should be integrated to properly model the in-
tricate dependencies of personality as a function of affective
media stimuli and physiological responses.

Hence in this research, we propose a novel learning
network that would aggregate Multiple-Observations into
Single-Personality. All the physiological cues of a single
subject while simultaneously considering the original mul-
timedia content for personality trait recognition. Accord-
ing to our hypotheses, incorporating the stimuli’s acoustic-
visual information as pre-regularization into learning would
further achieve a more accurate personality prediction. In
summary, the contributions of this paper are three-fold:

1): To our best knowledge, this is the first work that
addresses the problem of multiple instance integration for
personality recognition. While all previous studies [27],
[28] aggregate multiple observations to a single individual
personal prediction by either early/late fusion method,
we present a data-driven voting method which would
weigh an uncertain number of instances for enhancing
modeling.
2): We propose a novel content-graph personality recogni-
tion framework that is evaluated on two publicly available
large physiological datasets, Amigos [21] and Ascertain
[20]. The original video elicitations are preprocessed into
Visual-Semantic and Acoustic-Affective embeddings to be
used as representation to inject the multimedia content
information into the learning framework. Furthermore,
we propose a graphical structure that is designed to model
both instances and inter-correlation levels of physiology.
3): We analyze the learned attention distribution to un-
cover dominant videos for personality elicitation. Addi-
tional statistical testings are performed to uncover the
hidden correlation between subjective emotional feelings
and personality traits. Finally, several physiological de-
scriptors are highlighted as key indicators in revealing
personality traits.

We first introduce the idea of integrating multimedia for
personality recognition using physiology in our previous
work [29]. We have substantially extended the preliminary
conference version in the followings: (1) we advance our
algorithm in both graphical construction and prediction
step, which alleviate the impractical constraint in requiring
additional emotional tagging on video stimuli as done in
our previous work, (2) we evaluate our framework on an ad-
ditional and larger corpus and includes acoustic modality of
multimedia stimuli verifying the robustness of our system.
The recent STOA multiple-instance learning methods were

also jointly leveraged to verify our contribution to media-
guided learning strategy. (3) we conduct comprehensive
analysis under both intra- and inter- corpus scenarios to
identify the key physiological indicators.

The rest of this paper is organized as follows. Section 2
discusses related works. Section 3 introducs the datasets.
Section 4 5 details our proposed framework and the ex-
periment settings respectively. Section 6 summarizes the
personality recognition results where section 7 shows the
analysis. Finally, section 8 concludes the paper.

2 RELATED WORKS

In this section, we present a review of the existing works
that are closely related to our study in terms of automatic
personality recognition and affective graphical modeling.

2.1 Automatic Personality Recognition

Recently, there is a growing number of studies in developing
robust APR [30]. Depending on the triggering type and
modality characteristic, APR could be further divided into
either Spontaneous or Triggered personality recognition. Tex-
tual data is one of the major modalities that has been widely
studied in assessing one’s personality and is considered a
spontaneous type. Specifically, there has been a systematic
effort in constructing a dictionary with psychological ev-
idence with the indication of an individual’s personality
trait [31], [32]. Recently, a lot more research has focused
on analyzing profiles in social networks [33], [34], [35]
due to its inclusion of multimodal data. That is, behavior
collected using audio-video data on an individual has also
been shown to reveal personality traits. For example, stud-
ies in [36], [37] have shown that self-reported personality
traits could be inferred from spontaneous talks using both
acoustic-prosodic cues. Furthermore, the profile picture of
a virtual avatar put on the social network is known to be
indicative of one’s trait as well [38], [39], [40]. Finally, an
individual’s facial expressions as recorded in the video also
reveal one’s personality-related characteristic [41], [42]. A
major computational effort has largely been concentrated
on modeling expressive and spontaneous behavior data.

In contrast, fewer computational works have investi-
gated the development of APR using physiology. The in-
ternal nature of this modality as it is reactive to the triggered
external stimuli makes the measurement feasible, and this
provides us a chance to compute personality traits from a
different perspective compared to spontaneous setting. Abadi
et al. [43] fuse an individual’s reactive facial expression
with the ECG and GSR data for improved trait recognition;
they apply a linear regression model to obtain Fl-scores
of 70% and 69% for predicting extroversion and openness.
In [44], emotional level (Arousal / Valence) is additionally
examined for personality recognition, and they conclude
that physiological responses using similar emotional clips
could reveal more personality differences. Correa et al. [45]
propose a multi-task cascaded network using EEG data,
which firstly predicts the emotion status then finally aggre-
gates all the responses from a single person for personality
recognition; their approach achieves an improvement of
2.7% mean f1-scores on average.
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From all these literature reviews, we could conclude that
all these studies focused on either feature developing or
multimodal fusion, yet there have not been any computa-
tional works specifically tackling the problem of the Many-
to-One personality aggregation algorithm development. An
efficient and reliable method to aggregate multiple obser-
vations from a single subject for personality modeling re-
mains unstudied. Hence in this study, comprehensive works
on multiple instance aggregation methods were covered,
and we further propose a media-guided attentive graphical
model to help the multiple observations aggregation.

2.2 Affective Graphical Modeling

Integrating graphical modeling into deep learning ap-
proaches has been growing in the field of affective com-
puting. Graph Neural Networks (GNNs) is an effective rep-
resentation learning framework in modeling non-Euclidean
space of complex structural relationships between interde-
pendency objects [46], [47]. Several research works have
applied GCNs on brain images due to their graphical nature.
For example, Zhong et al. [48] propose a robustly regu-
larized GCN model that achieves state-of-the-art accuracy
on EEG-based emotion prediction. In [49], a dynamic GCN
model is designed to automatically learn the connection
among brain regions for an enhanced EEG emotion recogni-
tion. Graphical learning is not only limited to brain signals.
Ghosal et al. [50] propose to model group interaction as a
temporal graphical process, in which the dialogue interac-
tions could be jointly modeled for better speech emotion
recognition. Furthermore, a visual-based GCN model is
proposed by Bhattacharya et al. [51] to learn an emotion
assessment with gait data.

One of the assumptions in applying GCN models is
that the data should be graph-like, which is composed of
nodes and edges. According to the formation of the edges,
we further categorize the GCN modeling: 1. The edges
are linked by node attributes (mostly relative distances).
These edges are formed through known domain rules or
characteristics, such as brain structures [52], [53], [54] or
skeleton keypoints [55], [56], [57]. Usually, these edges are
initialized at the beginning and would remain constant
throughout the whole learning progress; 2. The edges are
automatically learned from the data. These types of works
mostly targeting on developing algorithms that could infer
the latent graphical structure through data itself without
prior knowledge [58]. Temporally varying data would also
require a dynamic graph learning strategy to adapt the
structural variation over time [59]. Although these methods
automatically infer the graphical structure, it often has a
high requirement on both the quality and quantity of data
for edge learning.

Motivated by these studies, this work proposes a multi-
modal graphical construction technique that embeds audi-
tory or visual information into physiological graph mod-
eling. With the additional constraint from these original
physiological responses’ inducers, the proposed model can
help to better mine the input signals, learning a more
discriminative and robust personality modeling.

TABLE 1: Big-Five personality and associated adjectives.
[60]

Personality Trait Adjectives

Agreeableness (Agr) Appreciative, Forgiving, Generous,
Kind, Sympathetic

Conscientiousness (Con) Efficient, Organized, Planful, Reliable,
Responsible, Thorough

Creativeness (Cre) Artistic, Curious, Imaginative, Insightful,
Original, Wide Interests

Emotion Stability (Emo) Unenvious, Relaxed, Unexcitable, Patient,
Undemanding, Imperturbable

Extraversion (Ext) Active, Assertive, Energetic, Enthusiastic,
Outgoing, Talkative

TABLE 2: Personality label distribution (Low/High) for two
separate datasets.

Agr Con Cre Emo Ext

Amigos 16/22 16/22 24/14 19/19 24/14
Ascertain 30/28 31/27 33/25 29/29 29/29

TABLE 3: The list of the repetitive video stimuli used in both
Amigos and Ascertain databases.

Video ID Source Movie
Amigos Ascertain

1 10 August Rush
2 13 Love Actually
4 18 House of Flying Daggers
6 20 My Girl
7 23 My Bodyguard
9 31 Prestige
10 34 Pink Flamingos
11 36 Black Swan
12 4 Airplane
13 5 When Harry Met Sally
16 9 Hot Shots

3 DATASETS

In this study, we use two large physiological datasets col-
lected under a similar scenario for our algorithm devel-
opment and evaluation. In each dataset, a series of emo-
tional videos with intended affective stimuli (annotated
with high/low arousal or valence, -Int) were delivered as
multimedia elicitation to arouse the participants’ affective
responses. The participants were asked to self-disclose their
subjective feelings (-Sb) at the end of each video, while their
physiological responses (ECG, EDA) were recorded with
bio-sensors throughout the time. Meanwhile, personality
measures for the big-five dimensions were also compiled
using a Big-Five marker scale (BFMS) questionnaire [61].
The Big-Five framework has become one of the widely
used personality trait measurements [62] and could be eas-
ily interpreted by referring to their associated personality
dimensions as presented in Table 1. Specifically, we carry
out the personality recognition experiments as a binary
classification problem, i.e., for each dataset, the labels for
personality are divided into high and low classes using
the median value of each dimension as the threshold as
demonstrated in Table 2. Several details of the datasets are
listed below:
• Amigos (Am) [21]: A total of 16 short emotional videos

(duration<250s) were carefully chosen from previous re-
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TABLE 4: An overview of physiological low-level descrip-
tors extracted from [67]. “F*” indicates 15 statistical func-
tions1.

Modality Low-Level Descriptors

ECG(51)

number of artifacts, RMSSD, meanNN, sdNN, cvNN,
CVSD, medianNN, madNN, mcvNN, pNN50, pNN20, Triang,
Shannon h, ULF, VLF, LF, HF, VHF, Total Power, LFn,HFn,
LF/HF, LF/P, HF/P, DFA 1, DFA 2,Shannon, FD Higushi,
Average Signal Quality, F* Cardiac Cycles Signal Quality

EDA(68) F*SCR Onsets, F*SCR Peaks Amplitudes,
F*EDA Phasic, F*EDA Tonic

search as elicitation. 40 participants aged between 21 and
40 (mean age 28.3) were recruited in a laboratory envi-
ronment. Two participants were excluded due to missing
value of original personality scores, hence in total, there
are 38 subjects left for experiments.

• Ascertain (As) [20]: Ascertain is one of the largest datasets
aiming for studying physiological responses under emo-
tional content stimuli. There are 36 short movie clips
(duration 51˜127s) used for affective elicitation with 58
university students (mean age 30) collected in this dataset.
The whole data collection was conducted in the laboratory
environment using a commercial physiological sensor.
Note that there are 11 video stimuli listed in Table 3 which
are the same across both Amigos and Ascertain.

4 METHODOLOGY

4.1 Physiological Low-Level Descriptors (LLDs)
We first apply a low-pass filter cut-off at 60Hz on both
ECG and EDA signals. For ECG features, we first calcu-
late the RR-intervals for each video elicitation. Then, sev-
eral standard Heart Rate Variabilities (HRVs) like Standard
Deviation of the time interval between successive normal
heartbeats (SDNN) in the time domain or Low Frequency
to High-Frequency ratio (LF/HF) in the frequency domain
are calculated, which is known to be an important marker
of autonomic nervous system (ANS) modulation [63]. As
for EDA data, we compute the tonic and phasic component
[64], which has previously been shown as an important
measure linking the physiological status toward affective re-
sponses [65]. Besides, we also extract the Skin Conductance
Responses (SCR) onsets, peaks, and amplitudes, which are
commonly used for revealing the event-related alteration
during psychophysiological tests [66]. All of these LLDs
would act as key indicators of how the participants react
toward the multimedia stimulation, such that we could
use it to infer the participant’s personality traits. The ex-
act features and dimensions are listed in Table 4, and we
use the open-source toolkit [67] for feature extraction. A
standard z-normalization is then performed subject-wise on
each feature dimension to mitigate the issue of individual
differences.

4.2 Multi-Media Graph Building
In this research, our goal is to perform personality recogni-
tion in a multi-instances setting, i.e., given uncertain number

1. max, min, mean, median, std, skewness, kurtosis, min position,
max position, 25 percentile, 75 percentile, 75 percentile-25 percentile,
1 percentile, 99 percentile, 99 percentile-1 percentile

Fig. 1: The 2D visualization of the Visual-Semantic embed-
dings with K = 3 in Amigos dataset. Each small circle in
the graph refers to the frame-level embedding of the video,
while the larger circles are the final aggregated video-level
vectors. The colors are according to the original intended
emotional level (Int). L: Low, H: High, A: Arousal, V: Va-
lence.

of video elicited physiological responses, we aim to find a
mapping between these multiple physiological data points
into single personality score. Specifically, considering a set
of subject i’s d-dimensional LLDs xi = {x1i , . . . , x

Nv
i } ⊂

Rd while Nv denotes the number of the video stimuli
during the experiment, our objective is to find a Many-
To-One mapping F , which maps x to personality label
y = {y1, . . . , yNs}, where Ns is number of subjects. To
handle this multi-instances problem, we utilize the idea of
graphical signal processing.

We first transform each subject’s LLDs into subject-wise
graph-like structural representation G = {V ,E}. For each
subject i, the node-set Vi is comprised of all his observed
LLDs xi. As for the edges Ei, there are two types of connec-
tivity mechanism for graph building:
• Visual-Semantic (EV ideo): The first type focuses on de-

scribing the visual semantic cues of the source video
stimuli. For each video j, we utilize the 3D spatial-
temporal convolutional network [68], which is pre-trained
on a large video understanding corpus Kinetics [69] to
extract the frame-level video semantic vectors vframe

j =

{v1j , . . . , v
tk
j } ⊂ Rdv , where tk is number of time steps

of video while dv is the embedding dimension. Then, an
average pooling over time is applied to obtain the video-
level embedding. A further dimensionality reduction
method UMAP [70] was performed to prevent the curse
of dimensionality. The UMAP embedding method has
been verified as an improved non-supervise dimension
reduction tool that shown better discriminative power
particularly on retain both the local and global struc-
ture on the data distribution [71], [72]. More Specifically,
the traditional method such as PCA [73] or t-SNE [74]
could not meet our need to embed the relative distance
in multimedia semantic space, which the former only
focus on finding the principal components (eigenvectors)
while the latter only preserve the local instances dis-
tance but omit the multimedia-space global structure. We
regard this dimensionally-reduced embedding vvideoj as
representing semantic information of the video content.
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Fig. 2: Our proposed Acoustic-Visual Guided Attentive Graph Convolution Network.

Moreover, since the physiological responses are induced
through these video content, better modeling of these
videos means to include a prior description of latent
control of the physiology from these video content. Hence,
to properly incorporate these visual semantic into our
modeling, we initially retrieve the K-nearest neighbor of
all extracted vvideoj as depicted in Fig.1. Then, any of the
two nodes (physiological responses) in which their source
stimuli vvideoj are in their K-nearest neighbor would be
considered linked in EV ideo.

• Acoustic-Affective (EAudio): In addition to visual elici-
tation, acoustic cues are also another important source
for affective arousal [75]. Here we utilize the Open-
Source acoustic tool-box OpenSMILE [76] to character-
ize the acoustic component from the videos. We ex-
tract the frame-level ComParE16 features sets aframe

j =

{a1j , . . . , a
tk
j } ⊂ Rda for each video j, followed by av-

eraging over time with dimension reduction method ap-
plied to generate a single video-level acoustic embedding
avideoj . Then, we use the same technique as in visual-
semantic graph to retrieve the K-nearest neighbors for
the edge binding EAudio.

To this end, for each subject i’s physiological responses, we
have bound them into two different graphical representa-
tions GV ideo

i and GAudio
i which take into account of the au-

ditory and visual component of the elicitation, respectively.
These graphical representations will be further processed
through graph convolutional operators in the following
section.

4.3 Self-Attentive GCN
Our model is primarily motivated as a variation of Graph
Convolutional Network (GCN) [77] which performs a spec-
tral convolution for modeling structural data. The power
of capturing non-linear inter-relationship among instances
(nodes) makes it a great fit for our Multiple-to-Single per-
sonality recognition. The core GCN layer can be interpreted
as a special case of a first-order differentiable message-
passing framework:

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2H(l)W (l)) (1)

Here, H l denotes the lth layer in the network, and D,A
refers to the degree and adjacency matrix decomposed from
the above semantic graphs E . The ∼ is a re-normalization
trick in which that the self-connection is added to each
node of the graph. The model input H0 is equivalent to the
node matrix V of the graph with shape Nv × d. During the
forward pass, each node would perform message sharing
among the linked nodes, then multiplied by a learnable
weight matrix W of shape dlxdl+1, and finally activated
by a non-linearity function σ. Through this process, each
node’s (a subject’s single observed LLD) would first cross-
refer to its neighboring node (other linked LLDs which
were visually/auditorially closed in the source of the stimuli
as depicted in Section 4.2), then non-linearly integrated
through trainable GCN parameters as personality-refined
representation. Through multiple stacked layers of the GCN
blocks, eventually, we would get a set of representations that
contains maximally personality information. The represen-
tation would be a Nv×dl matrix, where each row nj acts as
the dl-dimensional latent states for each video elicitation.

Since our goal is to learn an automatic mapping from
multiple physiological data points of an individual into
a single individual-level personality trait, we employ an
automatic soft weighting mechanism to aggregate the above
GCN-generated representation. Specifically, we integrate a
self-attention technique [78] into our model:

αj
i =

exp(A(nji ))∑Nv

j=1 exp(A(nji ))
(2)

where A is a trainable network for outputting the atten-
tion weights. Note that during the calculation of the αi,
the output of the GCN nj is fed separately to obtain the
attention weight for each video j. We consider this step as a
data-driven regularized learning of a graph representation
for personality classification. Finally, a single graph-level
output would be obtained for each subject i as:

zi = n
ᵀ
iαi (3)

which is then fed into the standard deep neural network P
for final binary classification. The whole network F outputs
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a single personality prediction for each subject, and we
update the model through standard cross-entropy loss:

min
F
− 1

n

∑
[y logF(G) + (1− y)(1− logF(G))] (4)

The overall network is shown in Fig.2 and is implemented
with back-propagation using the sparse matrix multiplica-
tion kernel [79].

5 EXPERIMENTAL SETTINGS

5.1 Hyperparamters and Evaluation Metric

The exact architecture of our acoustic-visual guided atten-
tive GCN includes three blocks of networks: GCN block G
of a standard GCN layer with dimension [d − d/10]; atten-
tion block A that is composed of a single trainable matrix
with dimension [d/10 − 1] to output an attention weight
for each node; the final prediction layer P is constructed
using a dense layer with dimension [d/10 − 2]. Several
hyperparameters are grid-searched: dropout rate between
[0.2, 0.5], learning rate among [0.01, 0.005, 0.001], number
of connected edges K is set between [10% ∼ 90%] of the
number of original video stimuli. Batch size is fixed as 8,
the max epoch is 150 with early stopping patience 10, and
the optimizer is Adam. To prevent overfitting, we carry out
all experiments under subject-independent 10-fold cross-
validation(CV). For each set of hyperparameter, we repeat
the experiments 10 times with 10 different randomly initial-
ized model parameters and average the calculated metrics.
Finally, the highest results from our hyperparameter grid-
searched space were reported. The final evaluation metric
used is the unweighted average recall (UAR) and weighted
F1-score(F1).

5.2 Comparison Models

To comprehensively evaluate our proposed personality ag-
gregation network, we first conduct our experiments uti-
lizing linear SVM and vanilla DNN with the commonly
performed early/late(concatenation/majority vote) aggre-
gation methods. Since to our best knowledge that no other
researches are specifically tackling the similar Many-to-One
aggregation methods, we also re-implement some state-
of-the-art algorithms that were studied in other fields to
verify our idea of using acoustic/visual information to help
personality aggregation. Model details are listed below:
• SVM and DNN: The naive classification approach with-

out using the deep self-attention soft-voting scheme. Here,
we use the SVM with linear kernel and grid-searched
regularization parameter C among 0.1, 1, 10 [83]. There
are two variations to integrate multiple physiological re-
sponses into a single personality prediction; i.e., through
feature concatenation (-C) and majority vote (-V). The
concatenation method is originally used in the Amigos
[21] dataset paper, while majority voting was broadly
applied for personality aggregation [28], [80].

• Attention Multiple Instance Learning (AMIL) [81]: Mul-
tiple instance learning can be seen as a variation of su-
pervised learning that is designed to predict a single label
while a bag of instances is given. In this scenario, the bag
could be viewed as the multiple stimulated physiological

responses aroused from various video elicitation, while
the single label refers to a subject’s personality trait. The
improved AMIL adopts the use of self-attention mecha-
nism 2 as a soft-voting scheme during the bag prediction,
which has been regarded as one of the state-of-the-art
methods for multiple instances prediction tasks. However,
comparing with graphical models, this method focuses
on an instance-level integration but ignores the potential
structural information between instances. We regard this
method as the very naive data-driven personality aggre-
gation baseline. Hyperparameters like learning rate and
dropout were also grid-searched for a fair comparison.

• Set Transformer (SET) [82]: Inspired from the transformer
model [84] which has achieved great success in various
tasks, Lee et, al proposed a novel Many-to-One network
called Set-Transformer. By taking advantage of the char-
acteristic of the Multi-Head Attention (MHA), this model
explicitly forces the architecture to learn the interactions
among data from the same set. In our scenario, each set is
composed of all Physiologies from a single subject, while
the model would return a single output as the subject’s
personality trait. Due to its superior performance on
various instance aggregation tasks, we would regard this
model as the most closely state-of-the-art personality ag-
gregation method. We re-implement the network with the
same encoder-decoder architecture, in which the encoder
is a Set Attention Block (SAB) while the decoder is com-
posed of Pooling by Multihead Attention (PMA) block
followed by a dense for final output2. Hyperparameters
like learning rate and dropout were also grid-searched,
while the number of attention heads was searched among
[1, 2, 3].

• Vanilla GCN (GCN) [29]: The vanilla GCN models with-
out consideration of multi-media information. Instead of
utilizing the latent semantic correlation among the video
elicitations depicted in 4.2 to build the graph, here we
directly calculate the Pearson correlation between any
two nodes of a subject’s physiological responses. Those
samples larger than zero would be thought to as likely
correlated physiological responses and are connected in
the edge matrix E . This method is a GCN baseline without
the integration of multi-media content.

• Media-Guided Attentive GCN (GCN-[A/V/AV]): The
multi-media content-aware GCN illustrated in section 4.2.
Note that the essential difference when comparing with
our previously proposed method [29] is that in the previ-
ous approach, there is a strict requirement to obtain the
intended (-int) emotional annotation beforehand to build
the graphs for better personality recognition. While in this
paper, we relax this requirement in our newly designed
model, i.e., the graph formation is fully data-driven and
could lead to more explainable results when analyzing the
graphical binding for each individual. Several variations
of our model will be evaluated: A: using the acoustic
information EAideo for graph building; V : utilizing the
semantic visual cues EV ideo for graph building; AV : For
each subject, both acoustic and visual graph would be
jointly integrated into the network for joint modeling.
Specifically, each graph would pass through separated
GCN blocks G and attention block A. Then the final
graph-level embedding would be concatenated into a
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TABLE 5: The personality recognition results using the metric of UAR and F1. The † mark is the highest results which
statistically improved(Student’s t-test, p < 0.05) against the DNN-C and DNN-V baseline within a modality, while the
boldfaces are the results that both statistically improved and also the cross-modality global highest.

Amigos
SVM-C [21] SVM-V [80] DNN-C DNN-V AMIL [81] SET [82] GCN [29] GCN-A GCN-V GCN-AV
UAR F1 UAR F1 UAR F1 UAR F1 UAR F1 UAR F1 UAR F1 UAR F1 UAR F1 UAR F1

EC
G

Agr 0.500 0.431 0.500 0.479 0.573 0.566 0.552 0.560 0.639 0.648 0.653† 0.659 0.625 0.628 0.587 0.598 0.650 0.661† 0.643 0.652

Con 0.476 0.398 0.500 0.484 0.659 0.635 0.560 0.543 0.606 0.618 0.566 0.559 0.590 0.602 0.610 0.622 0.679† 0.685† 0.629 0.637

Cre 0.500 0.486 0.500 0.489 0.586 0.602 0.586 0.608 0.666† 0.686† 0.576 0.602 0.597 0.628 0.647 0.682 0.636 0.667 0.623 0.653

Emo 0.345 0.315 0.447 0.472 0.544 0.540 0.618 0.618 0.626 0.623 0.587 0.583 0.653 0.651 0.634 0.633 0.734† 0.734† 0.689 0.686

Ext 0.578 0.613 0.509 0.543 0.611 0.613 0.549 0.577 0.622 0.645 0.568 0.600 0.622 0.648 0.632 0.656 0.699† 0.731† 0.623 0.650

ED
A

Agr 0.455 0.399 0.500 0.425 0.609 0.621 0.590 0.575 0.647 0.647 0.651 0.658 0.597 0.647 0.681† 0.696† 0.628 0.634 0.634 0.640

Con 0.580 0.582 0.500 0.412 0.578 0.578 0.585 0.594 0.612 0.612 0.564 0.568 0.659† 0.706† 0.652 0.656 0.631 0.642 0.634 0.646

Cre 0.586 0.624 0.500 0.489 0.638 0.667 0.552 0.576 0.632 0.632 0.631 0.658 0.642 0.700 0.662 0.694 0.742† 0.776† 0.688 0.720

Emo 0.526 0.525 0.395 0.428 0.613 0.611 0.595 0.593 0.642† 0.642 0.587 0.582 0.615 0.652† 0.626 0.623 0.632 0.627 0.637 0.633

Ext 0.500 0.498 0.500 0.489 0.657 0.671 0.546 0.568 0.660 0.660 0.566 0.592 0.553 0.626 0.691 0.719 0.728 0.744 0.743† 0.760†

EC
G

+E
D

A Agr 0.500 0.431 0.500 0.425 0.636 0.634 0.523 0.553 0.634 0.636 0.584 0.597 0.645 0.654 0.641 0.645 0.647 0.649 0.657† 0.658†

Con 0.563 0.561 0.500 0.425 0.539 0.553 0.528 0.568 0.624 0.629 0.564 0.572 0.578 0.582 0.648 0.655 0.629 0.640 0.652† 0.660†

Cre 0.550 0.569 0.500 0.489 0.605 0.613 0.524 0.564 0.657 0.679 0.626 0.644 0.640 0.691 0.680† 0.707† 0.656 0.683 0.658 0.682

Emo 0.346 0.525 0.395 0.394 0.546 0.549 0.524 0.606 0.655 0.651 0.611 0.607 0.605 0.608 0.624 0.622 0.703† 0.701† 0.676 0.673

Ext 0.500 0.503 0.500 0.489 0.603 0.608 0.529 0.570 0.652 0.675 0.616 0.647 0.607 0.667 0.612 0.645 0.696† 0.723† 0.673 0.688

Ascertain
SVM-C [21] SVM-V [80] DNN-C DNN-V AMIL [81] SET [82] GCN [29] GCN-A GCN-V GCN-AV
UAR F1 UAR F1 UAR F1 UAR F1 UAR F1 UAR F1 UAR F1 UAR F1 UAR F1 UAR F1

EC
G

Agr 0.500 0.416 0.500 0.310 0.543 0.547 0.534 0.525 0.613 0.611 0.528 0.526 0.630 0.629 0.619 0.618 0.645 0.640 0.646† 0.644†

Con 0.428 0.427 0.498 0.477 0.579 0.579 0.537 0.507 0.605 0.603 0.552 0.547 0.596 0.594 0.627† 0.628† 0.614 0.613 0.626 0.625

Cre 0.500 0.465 0.525 0.475 0.557 0.583 0.535 0.498 0.612 0.614 0.619 0.627 0.591 0.597 0.627 0.635 0.634 0.643 0.636† 0.645†

Emo 0.488 0.487 0.343 0.574 0.613 0.611 0.622 0.590 0.595 0.594 0.553 0.551 0.678 0.677 0.662 0.660 0.691† 0.690† 0.669 0.667

Ext 0.386 0.383 0.414 0.413 0.531 0.527 0.491 0.484 0.598 0.596 0.607 0.605 0.610 0.608 0.634 0.631 0.617 0.615 0.666† 0.665†

ED
A

Agr 0.481 0.482 0.465 0.466 0.561 0.561 0.528 0.526 0.618 0.617 0.650 0.650 0.596 0.592 0.751 0.749 0.613 0.612 0.774† 0.774†

Con 0.542 0.543 0.544 0.503 0.622 0.624 0.576 0.540 0.623 0.624 0.568 0.566 0.588 0.586 0.639 0.638 0.642† 0.642† 0.634 0.629

Cre 0.500 0.413 0.500 0.413 0.592 0.597 0.524 0.471 0.621 0.624 0.602 0.610 0.567 0.577 0.642† 0.645† 0.615 0.622 0.637 0.644

Emo 0.534 0.534 0.431 0.431 0.612 0.610 0.519 0.514 0.636 0.634 0.572 0.570 0.674 0.670 0.667 0.664 0.716† 0.712† 0.709 0.707

Ext 0.345 0.344 0.517 0.517 0.547 0.545 0.534 0.507 0.629 0.628 0.547 0.540 0.603 0.600 0.643 0.641 0.648† 0.645† 0.629 0.626

EC
G

+E
D

A Agr 0.548 0.501 0.412 0.412 0.615 0.625 0.496 0.513 0.617 0.616 0.625 0.625 0.637 0.635 0.722† 0.717† 0.626 0.635 0.713 0.711

Con 0.508 0.506 0.505 0.425 0.614 0.614 0.509 0.540 0.612 0.613 0.577 0.576 0.595 0.594 0.643† 0.642† 0.612 0.619 0.621 0.622

Cre 0.500 0.465 0.500 0.413 0.600 0.614 0.508 0.504 0.610 0.616 0.651† 0.659† 0.589 0.594 0.630 0.636 0.604 0.625 0.607 0.614

Emo 0.405 0.394 0.431 0.438 0.514 0.514 0.504 0.547 0.614 0.611 0.574 0.566 0.667 0.666 0.624 0.619 0.707† 0.705† 0.652 0.648

Ext 0.368 0.366 0.414 0.411 0.579 0.579 0.497 0.482 0.593 0.591 0.557 0.554 0.600 0.598 0.669 0.666 0.617 0.644 0.681† 0.680†

single vector to serve as the fusion from both acoustic and
visual perspective before feeding into P for personality
prediction.

6 PERSONALITY RECOGNITION RESULTS

Table 5 summarizes our personality recognition results. Our
proposed Media-Guided Attentive GCN reaches the best
UAR results under different settings for all personality traits
recognition on both datasets. More precisely, our best model
reaches a relative maximum improvement of 4.7%, 0.2%,
10.4%, 12.1%, and 8.6% on Am and 15.9%, 2.1%, 4.2%,
10.3%, 10.2% on As in Agr, Con, Cre, Emo and Ext re-
spectively over the naive DNN-C approach. Several notable
observations are summarized below.

6.1 Baseline VS GCN
Firstly, we notice that the simple SVM method hardly pre-
dicts the personality traits either through direct concatena-
tion of all feature dimensions (SVM-C) or by using the ma-
jority voting scheme (SVM-V). When comparing the results
obtained using the naive DNN approaches, we could con-
clude that the non-linear neural learning method is much
more effective in modeling the latent complexity of the
personality patterns as reflected in the physiological signals.
However, the recognition rates obtained using DNN mod-
els are not satisfying either. We hypothesize that directly
concatenating physiological features (DNN-C) of a subject

2. https://github.com/juho-lee/set transformer

across all emotion stimuli would lead to an extremely large
feature dimension creating issues of overfitting, while the
naive majority voting method (DNN-V) underestimate the
variable importances that different video simulations have
on physiological responses for personality recognition tasks.

To handle these issues, we integrate the self-attention
mechanism into the model. More precisely, we observe sig-
nificant improvement on both datasets using either AMIL,
SET, or GCN architecture. Furthermore, we notice that there
is a larger gain for AMIL in the dataset Am, while a better
recognition is obtained using GCN in dataset As. We think
this result may come from the difference in sample sizes
between the two corpora. Since the GCN method addition-
ally consider the structural information (edges of graphs),
this explicit modeling of inter-responses often leads to better
performance when learning with larger datasets in contrast
to the relatively simple AMIL method.

On the other hand, surprisingly the SET model, which
we regard as the STOA model on multiple instances ag-
gregation, result in unsatisfying recognition in most of the
dimensions. Among all the non-multi-media-regularized
models, it only achieves the best recognition on Agr with
specific modalities (ECG,EDA in Am while EDA in As). We
hypothesize that this result is due to the overly-powered
architecture of the SET model (complex blocks of the MHA
models). In other words, the extremely high degree of
freedom could somehow let the model learn an enhanced
recognition, but more often it would lead to trivial recogni-
tion especially on the small sample tasks in our scenario.

Finally, our proposed content attentive GCN method

https://github.com/juho-lee/set_transformer
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(a) Attention of Agr in Am. (b) Attention of Agr in As. (c) Attention of Con in Am. (d) Attention of Con in As.

(e) Attention of Cre in Am. (f) Attention of Cre in As. (g) Attention of Emo in Am. (h) Attention of Emo in As.

(i) Attention of Ext in Am. (j) Attention of Ext in As.

Fig. 3: Line plot of the attention of all models. Note that the heavier the color of the line refers to higher UAR in Table
5, while the horizontal black line (Thre) is defined as 1/Nv which state as the average-level of attention received if no
audio/video inducer is explicitly important arousing the personality enriched physiologies.

reaches the best recognition rates under different stimula-
tion settings for each personality dimension. During the
graph binding step, we manually force each node to only
bind edges among nodes from a similar intended emotional
stimulation. We believe that this acts as a hard constraint as
if we force our model to focus on learning subtle structural
information of physiology under similar affective stimu-
lation, and this fine-grained representation improves our
personality recognition results. More detailed comparisons
would be elaborated in the following section.

6.2 Personality and Modality Specific Results
We are also curious about under WHICH modality and
under WHAT multi-media stimuli would most effectively
reveal the personality traits by examining an individual’s
physiology. In this section, we mainly focus on the compar-
ison of GCN results under different graph binding methods
using either Audio or Video in ECG or EDA modality. To
begin with, we first focus on the Agr. We could immediately
notice that the Audio component of the emotional stimuli is
a key stimulus while EDA is an important indicator in rec-
ognizing Agreeableness. This setting consistently reaches the
highest performance of 68.1% and 75.1% on both datasets.
Besides, the fusion of audio and video further improves the
recognition in As, where multi-modality integration benefits
the prediction with a larger sample size dataset. Second,
for the dimension of Conscientiousness, we regard this as a
more challenging personality dimension to recognize from
physiology in which there seems to be no specific modality
or preferential elicitation. We also observe that we reach

the lowest improvement in this dimension. In Creativeness,
we see from the results that EDA acts as an important
measure in revealing how eager a person learns new things
and enjoys new experiences. It is interesting to observe
that Visual cues in Am helps in revealing more personality
variability while Audio elicitation triggered more differences
in As.

In Emotion Stability, generally, the Visually-aroused phys-
iology consistently achieves higher recognition in contrast
to the Audio-based elicitation. Besides, it is interesting to
observe that under visual stimuli, although EDA reaches the
highest recognition 71.6% in As, there is a drop to 63.2% in
Am. In contrast, the ECG consistently reaches competitive
results of 73.4% and 69.1% UAR, which may infer that the
cardiovascular-related signal serves as a more robust indi-
cator of evaluating a subject’s emotional stableness. Finally,
in Extraversion, we observe that the EDA outperforms ECG.
Besides, similar to Cre, Visual-component of the emotional
stimuli is a more important elicitation in triggering this trait,
though fusing both acoustic and visual information could
further boost the performances.

In summary, our proposed Acoustic-Visual Guided At-
tentive GCN reaches state-of-the-art recognition on most of
the personality recognition tasks in both datasets. In Agr,
the combination of Audio elicitation and EDA signal could
expose one’s trait polarity more effectively. As for the Cre
and Ext, although no specific types of stimuli are dominated,
the EDA signal consistently serves as a good indicator
revealing personality traits. Finally, we also show that an
individual’s mood stability can be robustly recognized by
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TABLE 6: The most important video elicitations for each setting.

Amigos Ascertain
ECG EDA >=3 ECG EDA >=3

Aud Vid Aud Vid Aud Vid Aud Vid
Agr 1, 6 4, 7 5, 7, 10, 12, 14 4, 7, 12, 13, 14 7 4, 5, 12, 19, 34 6, 9, 18, 22, 23 2, 3, 13, 16, 22 5, 14, 18, 22, 34 22
Con 5, 7, 10, 12, 14 4, 5, 7, 13, 14 5, 7, 14, 15 4, 5, 7, 10, 13 5, 7, 14 4, 5, 12, 19, 34 6, 18, 19, 22, 23 1, 2, 3, 16, 32 4, 18, 19, 22, 23 19
Cre 15 4, 5, 7, 13, 16 1, 6 4, 7, 12, 13, 16 12, 15, 23, 30, 32 14, 18, 22, 23, 30 12, 23, 28, 31, 34 12, 18, 19, 23, 30 23, 12, 30
Emo 2, 8, 9, 13, 16 4, 7, 10, 14, 16 2, 6, 8, 15, 16 1, 4, 7, 13, 15 16 12, 23, 28, 32, 34 4, 18, 22, 23, 30 14, 15, 20, 26, 35 8, 18, 22, 23, 30 23
Ext 1, 6 4, 5, 7, 13, 14 7, 14, 15 4, 7, 12, 13, 14 7, 14 1, 6, 15, 23, 30 4, 18, 19, 22, 23 7, 8, 15, 23, 28 6, 9, 18, 22, 23 23

>=3 4, 5, 7, 13, 14 7, 14, 15 4, 7, 12, 13 12, 23, 34 18, 22, 23 18, 22, 23

measuring their ECG signal when exposing affective visual
stimuli.

7 ANALYSIS AND DISCUSSION

In this section, we provide analyses in understanding the
potential modulation that multimedia content has on phys-
iological personality recognition. We gather our model’s
supervised-learned self-attention weights α for each subject
then average them into video-level statistics shown in Fig.3.
This attention (range from 0˜1) would indicate that the im-
portant videos which could largely arouse the individual’s
physiology that reveal his/her personality trait. Here we
focus on every single modality aroused by either the Audio
or the Visual component of the emotion elicitations. Several
statistical analyses would be conducted in the following.

7.1 Key Elicitations

Firstly, we are curious about whether there exist specific
videos that consistently act as the most important (key)
elicitation for different personality dimensions. Hence, we
analyze the attention distribution in Fig.3 and select the
most important video IDs using these two criteria:

• The attention weight that is larger than the threshold
1/Nv

• The attention weight that is in the top 5 of all video
elicitations

The results are shown in Table 6. We could immediately
notice that the video “House of Flying Daggers” (ID is 4 in Am
and 18 in As respectively) are key visual elicitation, which
is consecutively selected as important stimuli using the at-
tention mechanism in both datasets. Moreover, this video’s
visual content is considered important in predicting person-
ality traits across ALL dimensions. Another important video
is “My Bodyguard” (ID is 7 in Am and 23 in As). Again, the
network learns to select this video as key visual elicitation in
almost all personality dimensions (the only exception is in
dataset As’s Agr dimension). Moreover, if we take a closer
look into the dimension of Ext, we can conclude that not
only visual but audio cues are also crucial for predicting
this trait in both datasets. It is interesting to observe that
there indeed exist interrelationships between personality
traits and affective multimedia, and all these samples show
support of the idea that individuals’ personalities would be
reflected in their physiology with a variable degree that is
conditioned on the auditorial/visual elicitation they receive.

7.2 Emotional Multimedia

Since all the multi-media elicitations in both datasets have
been carefully chosen from previous literature as affective
elicitations, we would also like to investigate whether there
exists a latent modulation between the emotional content,
subjective emotion ratings, and personality traits. We first
average all the emotion ratings (-SB) to serve as the in-
dication of the level of emotional content for each video.
Then we perform the Pearson correlation to examine the
correlation between the attention importances α and the
level of emotional content in video elicitations (Note that
to ensure the fidelity of this analysis, we only target the
modalities under Audio or Video elicitation which reaches the
highest UAR in Table 5). Interestingly, we find no significant
correlation between traits of Agr, Con, Cre, Emo toward emo-
tion labels for either ECG or EDA signals. However, we find
that in both Am and As dataset, the attention weights for
modeling Extraversion, i.e., learned from ECG signals using
visual semantic guided graph, are statistically correlated
with the feeling of “Disgust” (r = 0.64909, p = 0.0065153)
and “Familiarity”(r = −0.3599, p = 0.031084) respectively.
In other words, it implies that the more “Unfamiliar”
or “Uncomfortable” the visual elicitations are delivered,
the more discriminative cardiovascular variance would be
aroused, in which this variance would reflect an individual’s
degree of outgoing and sociative.

7.3 Important Physiological Indicators

We also investigate the key physiological descriptors that
are indicative of an individual’s personality trait. We first
participant’s physiological features according to the videos
that are learned with high attention (both auditorial and
visual perspective) in Table 6. Then these physiological
descriptors are gathered from all individuals in each dataset,
then we perform the Students t-test to search for the im-
portant physiological features. Finally, we only retain those
descriptors that are consistently selected in both Am and As
datasets to indicate their robust cross-corpus evidence. The
final selected features are listed in Table 7

We first notice that no feature is selected for ECG
modality in Aggreableness. This is consistent with our pre-
vious conclusion that ECG is not an informative modality
for modeling an individual’s social harmony characteristic.
Then we observe that “Shannon entropy” related descrip-
tors are consistently picked among the rest of the personality
dimensions. Shannon entropy is commonly calculated in
the domain of information theory, and it has been verified
for its discriminative power on modeling human emotion
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TABLE 7: The important physiological descriptors that are
stimulated under the key videos are shown in Table 6. Note
that all the descriptors listed are statistically correlated (p−
value ≤ 0.05) with a particular personality dimension in
both Am and As datasets.

ECG EDA

Agr EDA Tonic 99 per,
EDA Tonic min pos

Con
CVSD, Entropy SVD,

Fisher Inf, Shannon h,
VHF, madNN, mcvNN

EDA Phasic LF, EDA Tonic 99minus1 per,
EDA Tonic HF, EDA Tonic LF,

EDA Tonic ULF, EDA Tonic VLF,
EDA Tonic kurtosis, EDA Tonic max

Cre CCSQ min pos,
Shannon h, VHF

EDA Tonic VLF
SCR Peaks Amp kurtosis,

SCR Peaks Amp skewneww

Emo
CCSQ std, DFA 1,
HF/P, HFn, LFn,
Shannon, Triang

EDA Phasic LF, EDA Phasic mean,
EDA Tonic HF, EDA Tonic LF,

EDA Tonic VLF, EDA Tonic mean,
EDA Tonic up quar,

SCR Peaks Amp 99minus1 per,
SCR Peaks Amp min pos

Ext
CCSQ low quar,

Correlation Dimension,
Shannon, pNN50

EDA Tonic ULF,
SCR Peaks Amp 99 per

reactions [85], [86]. We also notice that more frequency-
domain Heart Rate Variabilities (HRVs) are linked toward
Emotion Stabliltiy, which is consistent with previous studies
in showing the relationship of this feature with emotional
intelligence/stress-related indices [87], [88]. Similar to Zo-
har’s study [89], systematic and significant associations be-
tween personality traits and HRV’s frequency components
were found. Yet unlike our study, they conclude that the
LF/HF(low frequency to high-frequency ratio) was related
to the personal traits, which could originate from the sub-
stantially different experiment design in which they didn’t
have any types of emotional stimuli in their study.

As for the EDA modality, we immediately see that in
comparison to ECG, more descriptors are selected across
all personalities, which is consistent with our recognition
results that EDA is a relatively more robust descriptor. We
then further observe that in general, “tonic” related descrip-
tors are more important than “phasic” features. According
to the definition, the tonic component reflects the background
characteristics, which models the underlying slowly chang-
ing baseline that is caused by the drifting skin conductance
level (SCL) and other unconscious activities. This usually is
considered as static emotion changes that indicate a simi-
larity in the static nature of personality construct [90]. Our
findings also show consistent with previous studies. Cu-
mulated researches have associated the reliability (the pha-
sic component) between EDA and Agreeableness-Antagonism
(Agr). For example, in Crider’s study [91], specific phasic
components were assessed over two sessions of iterated
auditory stimulation in a sample of 22 male undergradu-
ates. The two reliability measures have shown positively
correlated with Minnesota California Psychological Inventor
(CPI) and inversely correlated with Multiphasic Personality
Inventory(MMPI) scales, where the higher CPI indicates the
higher responsibility and self-control while higher MMPI
generally linked to a poorly socialized, impulsive disposi-
tion indicative of psychopathy. The phasic component has
also been connected to Conscientiousness as over-controlled

and under-controlled personality types in Blocks study [92].
We also see that the Skin Conductance Reactivity(SCR)
has also been indicated as a key descriptor distinguishing
personality, which was also reported in Norris’s study [93],
that they found that individuals lower in Emotion Stability
exhibited greater skin conductance reactivity to the emo-
tional picture stimuli.

All these studies have suggested that individual differ-
ences could be elicited by external stimuli and monitored
through measured physiological responses. In summary,
through additional multimedia constraints, our model au-
tomatically learns that the combination of latent slowly
changing plus certain event-related measures could most
properly model an individual’s personality traits.

8 CONCLUSION AND FUTURE WORK

In this work, we aim to find a data aggregation strategy to
aggregate multiple induced physiological observations into
a single subject’s personality. To the best of our knowledge,
this is also one of the first frameworks with comprehensive
analyses that learn to embed the source multimedia stimuli
into a graph structural network for automatic personal-
ity recognition. To extract the multimedia information, we
propose two distinct strategies based on either the data-
driven Visual-Semantic cues or the expert-defined Acoustic-
Affetive features. These two types of multimedia information
provide the network with a prior view on the source stimuli
in guiding the learning of the physiological responses with
an aid of a graphical structure. A Graph Convolutional
Network is applied followed by a Self-Attention mechanism
to complete our media-guided attentive graphical network
for personality modeling. We evaluate the proposed meth-
ods on two large benchmark databases Ascertain [20] and
Amigos [21]. Our experimental results demonstrate that the
method achieves state-of-the-art on these two datasets.

Three further analyses are conducted to understand the
role of affective media in inducing physiological responses
reflecting personality traits. We first examine the attention
weights automatically learned from the model to identify
the potential video preference for personality elicitation. The
cross-database comparison shows that both “House of Flying
Daggers” and “My Bodyguard” are two of the key person-
ality inducers among all personalities. We further perform
statistical analysis between learned attention weights and
subjective emotional ratings of the media stimuli. Cor-
relational analysis result suggests that more “unfamiliar”
nor “uncomfortable” the visual elicitations are delivered, the
more reflective ECG signal would be aroused on assessing
the level of Extraversion. Finally, through examining each
physiological descriptor, we conclude that “Shannon En-
tropy” related features in ECG, as well as “tonic” component
which modeling slowly baseline changes in EDA are robust
descriptors for personality identification.

There are multiple future directions. Firstly, we will
investigate additional technical approaches for joint mod-
eling the temporal variation of physiology during media
stimuli. Although we already extracted statistical descrip-
tors, which contain certain temporal information, employ-
ing time series-based modeling could potentially further im-
prove the recognition. Second, larger and diverse databases
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should be collected. Through this research, we have demon-
strated that multimedia content could act as a personality
trigger, yet most of the current researches merely focusing
on a short and limited set of emotional videos as stimuli. An
immediate next step is to gather and inspect a wider and
diverse range of multimedia sources of different domains
(such as movies, social media, and gaming), which can be
used as emotion elicitation triggers. Automatically video
tagging algorithms should also be incorporated to analyze
the delivered multimedia contents(characters, actions, en-
vironment context, etc...) that would help us understand
the neuropsychological working function of the emotional
videos to the induced physiologies. Better understand ex-
actly what components of multimedia content would trig-
ger physiological responses while providing evidence of a
subject’s personality would help in advancing a variety of
human-centered multimedia applications [94], [95].
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